1,741 research outputs found

    Coherent Destruction of Tunneling and Dark Floquet State

    Full text link
    We study a system of three coherently coupled states, where one state is shifted periodically against the other two. We discover such a system possesses a dark Floquet state at zero quasienergy and always with negligible population at the intermediate state. This dark Floquet state manifests itself dynamically in terms of the suppression of inter-state tunneling, a phenomenon known as coherent destruction of tunneling. We suggest to call it dark coherent destruction of tunneling (DCDT). At high frequency limit for the periodic driving, this Floquet state reduces to the well-known dark state widely used for STIRAP. Our results can be generalized to systems with more states and can be verified with easily implemented experiments within current technologies.Comment: 5 pages, 3 figure

    Military Modernization and Peaceful Rising: A Harmonious Transition of the PLA into the Future

    Get PDF
    This article seeks to elucidate the recent changes to the Chinese military by examining the new characteristics of the People’s Liberation Army (PLA) and its newly adopted approaches for modernization between 2003 and 2008. It includes diachronic discussions to explore various social and political factors for the changes, domestic and international constraints on the implementation of military modernization, and the outcomes of these endeavors. The main findings indicate that the Chinese military has changed its main feature as two important transitions have emerged: first, the PLA has been transformed from a manpower intensive army to a technology oriented force; and second, from a national security army to an internationally operated force. Consequently, the high command begins to consider the PLA as a part of the global military cooperation

    ANALYSIS OF LARGE-SCALE TRAFFIC INCIDENTS AND EN ROUTE DIVERSIONS DUE TO CONGESTION ON FREEWAYS

    Get PDF
    En route traffic diversions have been identified as one of the effective traffic operations strategies in traffic incident management. The employment of such traffic operations will help relieve the congestion, save travel time, as well as reduce energy use and tailpipe emissions. However, little attention has been paid to quantifying the benefits by deploying such traffic operations under large-scale traffic incident-induced congestion on freeways, specifically under the connected vehicle environment. New Connected and Automated Vehicle technology, known as “CAV”, has the potential to further increase the benefits by deploying en route traffic diversions. This dissertation research is intended to study the benefits of en route traffic diversion by analyzing large-scale incident-related characteristics, as well as optimizing the signal plans under the diversion framework. The dissertation contributes to the art of traffic incident management by 1) understanding the characteristics of large-scale traffic incidents, and 2) developing a framework under the CAV to study the benefits of en route diversions.Towards the end, 4 studies are linked together for the dissertation. The first study will be focusing on the analysis of the large-scale traffic incidents by using the traffic incident data collected on East Tennessee major roadways. Specifically, incident classification, incident duration prediction, as well as sequential real-time prediction are studied in detail. The second study mainly focuses on truck-involved crashes. By incorporating injury severity information into the incident duration analysis, the second study developed a bivariate analysis framework using a unique dataset created by matching an incident database and a crash database. Then, the third study estimates and evaluates the benefit of deploying the en route traffic diversion strategy under the large-scale traffic incident-induced congestion on freeways by using simulation models and incorporating the analysis outcomes from the other two studies. The last study optimizes the signal timing plans for two intersections, which generates some implications along the arterial corridor under connected vehicles environment to gain more benefits in terms of travel timing savings for the studies network in Knoxville, Tennessee. The implications of the findings (e.g. faster response of agencies to the large-scale incidents reduces the incident duration, penetration of CAVs in the traffic diversion operations further reduces traffic network system delay), as well as the potential applications, will be discussed in this dissertation study
    corecore